地盤改良用製鋼スラグ

グリーン購入法の「特定調達品目」として指定されています。

特長

- ●粒子が硬く、角張っており、せん断強度が大きい。
- ●粒子密度、単位体積重量が大きい。
- ●粒度分布が良く、締固めやすい。
- ●従来の天然砂を用いたサンドコンパクションパイル 工法(軟弱粘土の置き換え改良)と比較して、必要 改良幅を低減できます。

用途

- サンドコンパクションパイル工法(SCP)用材料 (粘性土地盤対象の場合、高置換率改良(70%以上)を対象)
- ●プレローディング用材料
- ●中仕切り堤用材料
- ●置換工法用材料

品質および各物性値

■粒子密度

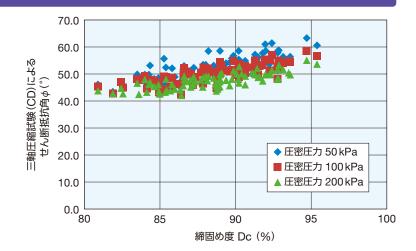
製鋼スラグの粒子密度は概ね3.2~3.7g/cm3の範囲です。

■粒度

製鋼スラグの粒度は概ね次の範囲にあります。

粒	径 (mm)	37.5	26.5	19.0	4.75	2.0	0.425	0.075
通過(%	量量百分率)	90~100	70~100	55~100	15~65	5~50	0~30	0~10

■単位体積重量(kN/m³)


製鋼スラグの単位体積重量は概ね次の値です。

	単位容積質量試験	最小密度·最大密度試験 (JIS A 1225)		
	(JIS A 1104)	緩い状態	密な状態	
湿潤単位体積重量 kN/m³ (含水比5%に換算)	19~26	19 ~ 24	22 ~ 28	
締固め度Dc(%)	83 ~ 91	75 ~ 85	91 ~ 99	

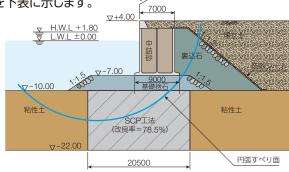
力学的性質(せん断特性)

締固め度Dcが80%程度以上あれば、 せん断抵抗角φ≥40°を確保できます。

参考: SCP工法における締固め度Dcはほぼ100%に相当。 例えば松尾稔他: 地盤環境工学の新しい視点 - 建設発生土類の有効活用-

環境安全品質基準

地盤改良用製鋼スラグは、環境安全品質を満足しています。

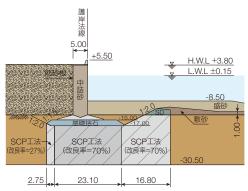

	陸上用途				海上用途	
項目	溶出量(環境省告示18号)		含有量(環境省告示19号)		溶出量(JIS K 0058-1)	
块 口	試験結果	溶出量基準 (mg/L)	試験結果	含有量基準 (mg/kg)	試験結果	溶出量基準 (mg/L)
カドミウム	<0.001	0.003以下	<10	150以下	< 0.001	0.009以下
鉛	<0.005	0.01以下	<10	150以下	< 0.005	0.03以下
六価クロム	<0.02	0.05以下	<10	250以下	0.02	0.15以下
ひ素	<0.005	0.01以下	<10	150以下	< 0.005	0.03以下
水銀	<0.0005	0.0005以下	<1	15以下	<0.0005	0.0015以下
セレン	<0.002	0.01以下	<1	150以下	0.006	0.03以下
ふっ素	0.2	0.8以下	410	4000以下	1.6	15以下
ほう素	<0.2	1以下	100	4000以下	<0.2	20以下

地盤改良用製鋼スラグ

設計•施工

- ■SCP工法の設計 (港湾・空港・海岸等における製鋼スラグ利用技術マニュアル(平成27年2月) 劇沿岸技術研究センターによる)
 - ① せん断抵抗角 ϕ の特性値は 40° (偏心傾斜荷重に対する支持力照査の場合、 ϕ の特性値は 45°)です。
 - ② 単位体積重量 γ の特性値は湿潤 $23\,kN/m^3$ 、水中 $16\,kN/m^3$ 、飽和 $26\,kN/m^3$ です。
 - ③ 改良地盤の円弧滑りの検討断面及び検討結果(必要改良幅の違い)を下表に示します。

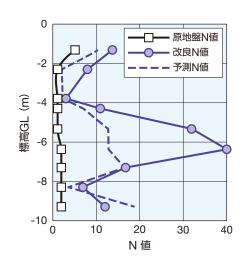
項	目	天然砂	製鋼スラグ
	湿潤単位体積重量 γt(kN/m³)	18.0	23.0
SCP杭の材料特性	水中単位体積重量 γ'(kN/m³)	10.0	16.0
	せん断抵抗角φ(°)	35.0	40.0
円形すべり計算 永続状態	安全率	1.005	1.172
(修正フェレニウス法)	必要改良幅(m)	24.5	20.5



■SCP工法の施工例

海上SCP(軟弱粘土の置換え改良)

広島港において施工された高置換率の海上SCP 工法(杭径 \$\phi 2000 mm、杭間隔2.1 m)の施工状 況写真と断面図を示します。現場で採取された 不攪乱試料で40°以上(40.9~48.5°)のせん断 抵抗角が得られました。



陸上SCP(ゆるい砂地盤の液状化対策)

陸上SCP工法(杭径 \$\phi\$700mm、杭間隔1.46m) の施工状況写真と予測N値と改良N値の比較図を示します。施工後の杭間砂地盤のN値の増加は、従来設計での予測値(c法*)以上を示し、従来の砂杭を用いた場合と同様に扱うことが可能です。

*例えば、山崎浩之:液状化対策としての締固め 工法に関する研究、港湾空港技術研究所資料、No.1210, 2010.

実績例

No.	用途	施主	期 間(年度)	使用量(千m³)	工事名
1	プレローディング用材	国土交通省	1985 ~ 1993	1400	東京国際空港沖合展開事業
2	中仕切り堤用材	愛媛県四国中央市	2005 ~ 2007	370	寒川東部臨海土地造成
3	海上SCP用材	広島県広島港湾振興局	1998 ~ 2000	692	広島港出島地区護岸
4	海上SCP用材	国土交通省	2001	242	大竹港東栄地区護岸築造
5	海上SCP用材	東京都港湾局	2007	230	東雲10号地
6	陸上SCP用材	国土交通省	2013 ~ 2014	150	北上川下流堤防液状化対策

鐵鋼スラグ協会

本部事務所: 〒103-0025 東京都中央区日本橋茅場町 3-2-10(鉄鋼会館 5F) TEL 03-5643-6016/FAX 03-5643-6018

URL: http://www.slg.jp

大阪事務所: 〒550-0002 大阪市西区江戸堀 1-10-27(肥後橋三宮ビル) TEL 06-6448-5817/FAX 06-6448-5805